

Control Co-Design for Wind/Tidal/Wave Energy Systems

Dr. Mario Garcia-Sanz

Program Director, ARPA-E U.S. Department of Energy

July 26, 2018

Sequential...

Myopic approach

 The increasing complexity of technology has changed the way we study engineering.
 Engineering careers are now much more specialized. Each step limits the next one

- New **engineers**:
- have a deeper knowledge of some aspects
- at the cost of a much **narrower picture!!**
- <u>Consequences</u>:
 - Sequential way of working in industry
 - Control = algorithms/circuits to regulate <u>existing</u> systems
- This sequential approach <u>limits</u> the <u>possibilities</u> of the design.

Concurrent...

Stable, but slow dynamics. **It failed**

Control

Engineering

Dynamics, Feedback,

Stability, Frequency,

Example. Wind turbine design Computer with Rotor velocity Control algorithm sensor Pitch Controller Ω_{r0} wind Reference for rotor Control Pitch Angle: ref(k),1(r),2(b),3(g) (deg blade velocity 430 Tower fore-aft natural freq. = 0.32 Hz = Reducing ~ 20 peaks in 60 seconds To blade pitch **Tower** Case G without Notch filter motors vibration TWT-1.65 (*) 440 450 460 470 To reduce (*) Garcia-Sanz, M. Robust Control **Rotor speed control system** Engineering: Practical QFT Solutions.

varying blade pitch angle to control rotor speed

(Boca Raton, Florida: CRC Press, 2017), 317-342. Time (sec)

tower cost

Sub-system interactions. Dynamics/Control

Control Co-Design. Methodologies

<u>Inputs</u>

Variety of
cases
(standards,
worse case
scenarios, etc.)
including:

- Wind,waves,currents...
- Parameters dynamic models
- Grid voltage, frequency...
- Events,...

Component(s), System

Control Co-Design Program

for Wind & Marine Hydro-Kinetic

Objectives:

To incorporate concurrent control engineering design philosophy in the energy sector.

To develop **computer tools** to facilitate the control co-design philosophy.

To develop new **energy solutions** and products that were not achievable otherwise.

Large sub-system interactions

- *Aerodynamics*
- **Hydrodynamics**
- Mechanical structures
- Drive-trains
- Electrical generators
- Power electronics
- Grid
- Etc.

Definition:

Control Co-Design =

Concurrent Control Engineering for Optimal System Design

Wind

Offshore Floating WT

Offshore Bottom-fixed WT

Onshore WT

Airborne WT

Wind Farms

Hydro-kinetic

Tidal Energy

Stream/River Energy

Wave Energy

Hybrid Systems

Wave, Tidal Farms

Control concepts: Limitations (Bode), Frequency resp., Root locus, Robust., MIMO.

Co-optimization: Simultaneous, Lagrange-based, AI, ML.

Co-simulation: Iterative, Nested/Bi-level.

Control Co-Design. Opportunities

 $LCOE = \frac{FCR * CapEx + OpEx + DecEx}{AEP}$

1. Mass reduction

- Mechanical fatigue reduction
- Flexible materials...

2. Survivability

- Extreme weather
- Maximum loads, Events...

3. Resiliency

- Fault-tolerance, Self-healing
- Time to recover

4. Efficiency

- Aerodynamic
- Mechanical, Electrical

5. **O&M**

- Operation costs
- Maintenance costs

6. Components Replacement

- Time between failure
- Access, costs

7. Performance decline

- Over the years
- Corrosion, aging...

8. Installation

- Vessels, strategies to reduce cost
- Self-deployment

9. Grid integration

- Frequency, voltage
- Active/reactive power

10. Off-grid opportunities

- Substituting diesel
- Other applications

11. Environmental friendly

- Noise, aspect...
- Birds, fish impact

12. Subsystem interactions

- Dynamic coupling
- Control solutions

13. **New paradigms**

- Nature inspired?
- Control, sensors, act.

14. **Hybrid** systems

- Wind + Wave
- + Tidal + Solar...

15. **Software** development

- Co-Optimization
- Co-Simulation

LCOE analysis

$$LCOE = \frac{FCR * CapEx + OpEx + DecEx}{AEP}$$

1. Offshore Floating + Bottom-Fixed Wind Turbines

- Comparison of (6 + 2) cases: 5 MW turbine, 100 machine farm
 - <u>FWT</u>: Floating Wind Turbines: Tension-Leg-Buoy (TLB B and X3), Spar-Buoy (Hywind),
 Semi-Sumergible (WindFloat), Tension-Leg-Spar (SWAY), Tension-Leg-Wind-Turbine (TLWT)
 - <u>BFWT</u>: Bottom-Fixed Wind Turbines (Jacket and Monopile)

2. Marine Hydro-Kinetic Energy Converters

- Comparison of 6 reference models
 - Hydrokinetic turbines:

Tidal RM1, Ocean RM4, River RM2

Wave Energy Converters:

Point absorber RM3, Surge Wave RM5, Water Column RM6

LCOE: Offshore Floating + Bottom-Fixed Wind Turbines (I)

CASE STUDY

(a) Turbine:

Turbine rated power 5 MW
Turbine rotor diameter 126 m
Turbine hub height 90 m
Water depth 200 m for floating
and 30 m for bottom-fixed

(b) <u>Farm</u>:

500-MW project size (100 WTs)
Distance from shore 200 km

(c) <u>AEP</u>:

45.7% Capacity factor Losses: Wake 7%, Grid 1.8%, Availability 93.8%, Other 9%. 3,125 h/year at rated power

(d) Economics: FCR of 10%

[1]. A. Myhr, C. Bjerkseter, A. Ågotnes, T. Nygaard, Levelised cost of energy for offshore floating wind turbines in a life cycle perspective, Renewable Energy, Vol. 66, pp. 714-728, June 2014.

[2]. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, *Definition of a 5-MW Reference Wind Turbine for Offshore System Development*. Technical Report NREL/TP-500-38060, February 2009.

LCOE: Offshore Floating + Bottom-Fixed Wind Turbines (II)

		-	per 5 MW tu 1W farm (10	urbine 0 machines)	% of CAPEX that is:				
Name	LCOE (cts\$/kWh) with export cables 200 km	CAPEX (M\$)	OPEX (M\$/yr)	DECEX (M\$ last yr)	Steel cost	Mooring System Cost water depth 200 m	Installation Cost . Turbine, Substructure and Mooring System		
TLWT	16.10	18.25	0.66	0.66	46.21	9.88	5.30		
WindFloat	18.90	23.00	0.66	-0.10	65.11	2.72	3.67		
TLB B	15.50	17.50	0.66	0.65	48.05	10.96	5.53		
TLB X3	15.60	17.75	0.66	0.63	48.86	11.04	5.45		
Hywind II	16.50	19.00	0.66	0.26	59.03	2.43	5.19		
SWAY	16.00	18.25	0.66	0.36	56.03	8.91	4.68		
Jacket	16.10	18.75	0.58	1.42	56.83	0.00	10.41		
Monopile	15.30	17.50	0.58	0.97	56.43	0.00	8.79		

$$LCOE = \frac{FCR * CapEx + OpEx + DecEx}{AEP}$$

Control Co-Design
"Control to substitute materials"

Hypothesis: Control Co-Design benefits --to discuss today--

Steel cost: \$1000 per ton

Losses reduction:

- -Turbulence losses, from 6% to 2%
- -Array losses, from 7% to 2%
- -Turbine availability, from 93.8% to 97%
- -Other losses, from 3% to 1.5%

Operation & maintenance: 15% improvement

Mass reduction: from 0% to 60%

LCOE: Offshore Floating + Bottom-Fixed Wind Turbines (III)

Given previous assumptions we obtained:

			per 5 MW to /IW farm (10	urbine 00 machines)	%	of CAPEX that	is:	Effects of Control Co-Design. LCOE reduction (%)								
Name	LCOE (cts\$/kWh) with export cables 200 km	CAPEX (M\$)	OPEX (M\$/yr)	DECEX (M\$ last yr)	Steel cost	Mooring System Cost	m Cost . Turbine,	Mass reduction = 50% Effect of mass reduction on LCOE (%)		Effect of turbulence and wake control (efficiency) on	Effect of OPI	PEX reduction = 15% Effect of OPEX reduction on LCOE (%)		Total effect on LCOE. Best case scenario (%)		
						200 m	Substructure and Mooring System	with export without exp cables cables	without export cables	LCOE (%)	with export cables	without export cables	with export cables	without export cables		
TLWT	16.10	18.25	0.66	0.66	46.21	9.88	5.30	22.29	24.10	15.02	3.91	4.23	41.22	43.35		
WindFloat	18.90	23.00	0.66	-0.10	65.11	2.72	3.67	27.87	29.77	15.02	3.33	3.56	46.22	48.35		
TLB B	15.50	17.50	0.66	0.65	48.05	10.96	5.53	23.17	25.11	15.02	4.03	4.37	42.22	44.50		
TLB X3	15.60	17.75	0.66	0.63	48.86	11.04	5.45	23.56	25.52	15.02	3.99	4.32	42.58	44.86		
Hywind II	16.50	19.00	0.66	0.26	59.03	2.43	5.19	24.65	26.61	15.02	3.83	4.13	43.50	45.76		
SWAY	16.00	18.25	0.66	0.36	56.03	8.91	4.68	25.43	27.51	15.02	3.93	4.25	44.38	46.78		
Jacket	16.10	18.75	0.58	1.42	56.83	0.00	10.41	25.00	27.02	15.02	3.42	3.70	43.44	45.74		
Monopile	15.30	17.50	0.58	0.97	56.43	0.00	8.79	24.04	26.12	15.02	3.63	3.95	42.70	45.09		

Control Co-Design "Control to substitute materials"

[1]. A. Myhr, C. Bjerkseter, A. Ågotnes, T. Nygaard, *Levelised cost of energy for offshore floating wind turbines in a life cycle perspective*, Renewable Energy, Vol. 66, pp. 714-728, June 2014.

[2]. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, *Definition of a 5-MW Reference Wind Turbine for Offshore System Development*. Technical Report NREL/TP-500-38060, February 2009.

LCOE: Offshore Floating + Bottom-Fixed Wind Turbines (IV)

LCOE: Tidal energy converters (I)

RM1: Tidal Turbine

CASE STUDY

(a) Turbine:

Rated power for each turbine 0.55 MW Turbine rotor diameter 20 m Seafloor to hub height 30 m Water depth 50 m

(b) <u>Farm</u>: 110-MW project size (100 towers, 200 turbines) Distance from shore < 1 km (c) <u>AEP</u>: 30% Capacity factor Losses: Wake 0%, Grid 2%, Availability 95%, Other 0%. 2,447 h/year at rated power

(d) Economics: FCR of 10%

LCOE: Tidal energy converters (II)

RM4: Ocean Turbine

CASE STUDY

(a) Turbine:

Rated power for 1 turbine 1 MW Turbine rotor diameter 33 m Seafloor to hub height 750 m Water depth 800 m

(b) <u>Farm</u>:

400-MW project size (100 machines, 400 turbines) Distance from shore 30 km

(c) <u>AEP</u>:

70% Capacity factor Losses: Wake 0%, Grid 2%, Availability 95%, Other 0%. 5,709 h/year at rated power

(d) Economics:

FCR of 10%

LCOE: Tidal energy converters (III)

RM2: River Turbine

CASE STUDY

(a) Turbine:

Rated power for 1 turbine 45 kW Turbine rotor diameter 6.4 m Seafloor to rotor height 11-21 m Water depth 15-25 m

(b) <u>Farm</u>:

9-MW project size (100 machines, 200 turbines) Distance from shore < 1 km

(c) <u>AEP</u>:

28% Capacity factor Losses: Wake 0%, Grid 2%, Availability 95%, Other 0%. 2,284 h/year at rated power

(d) Economics: **FCR of 10%**

LCOE: Tidal energy converters (IV)

Control Co-Design "Control to substitute materials"

				M\$ per machine in a 100 machines farm			% of CAPEX that is:			Effects of Control Co-Design. LCOE reduction (%)			
	Name	LCOE (cts\$/kWh) with export cables 0-30 km	Power per machine (kW)	CAPEX (M\$)	OPEX (M\$/yr)	DECEX (M\$ last yr)	Steel cost	Mooring System Cost water depth 20-750 m	Installation Cost . Turbine, Substructure and Mooring System	, ,	Effect of turbulence and wake control (efficiency) on LCOE (%)	reduction of	Total effect on LCOE. Best case scenario
RM1	Tidal Turbine	18.10	1100	3.53	0.09	0.40	49.22	0.00	7.47	21.40	5.60	3.03	30.03
RM4	Ocean Turbine	15.20	4000	24.88	0.68	1.86	43.12	7.21	2.26	20.05	5.60	3.13	28.78
RM2	River Turbine	36.00	90	0.50	0.02	0.03	43.57	4.32	4.15	19.06	5.60	3.72	28.38

RM1 RM2

[1]. Vincent S. Neary, Mirko Previsic, et al., Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. Technical Report SAND2014-9040, March 2014.

LCOE: Wave energy converters (I)

RM3: Wave Point Absorber

CASE STUDY

(a) Turbine: Rated power for 1 machine 286 kW Float diameter 20 m Central column height 42 m Water depth 40-100 m

(b) <u>Farm</u>: 28.6-MW project size (100 machines) Distance from shore < 30 km (c) <u>AEP</u>: 30% Capacity factor Losses: Wake 0%, Grid 2%, Availability 95%, Other 0%. 2,447 h/year at rated power

(d) <u>Economics</u>: **FCR of 10%**

LCOE: Wave energy converters (II)

RM5: Oscillating Surge Wave

CASE STUDY

(a) <u>Turbine</u>:

Rated power for 1 machine 360kW Flap dimensions 25 m x 19 m Rotation shaft diameter 3 m Water depth 50-100 m (b) <u>Farm</u>:36-MW project size(100 machines)Distance from shore < 30 km

(c) <u>AEP</u>:
30% Capacity factor
Losses: Wake 0%, Grid 2%,
Availability 95%, Other 0%.
2,447 h/year at rated power

(d) Economics: FCR of 10%

LCOE: Wave energy converters (III)

RM6: Oscillating Water Column

CASE STUDY

(a) <u>Turbine</u>:

Rated power for 1 machine 373 kW Wells air turbine diameter 3 m Water depth 40-100 m

(b) <u>Farm</u>:

37.3-MW project size (100 machines) Distance from shore < 30 km

(c) <u>AEP</u>:

27.7% Capacity factor Losses: Wake 0%, Grid 2%, Availability 95%, Other 0%. 2,259 h/year at rated power

(d) Economics: FCR of 10%

LCOE: Wave energy converters (IV)

Control Co-Design "Control to substitute materials"

				M\$ per machine in a 100 machines farm			% of CAPEX that is:			Effects of Control Co-Design. LCOE reduction (%)			
	Name	LCOE (cts\$/kWh) with export cables 0-30 km	Power per machine (kW)	CAPEX (M\$)	OPEX (M\$/yr)	DECEX (M\$ last yr)	Steel cost		Installation Cost . Turbine, Substructure and Mooring System	Effect of 50% mass reduction on LCOE (%)	Effect of turbulence and wake control (efficiency) on LCOE (%)	Effect of OPEX reduction of 15% (fatigue attenuation) on LCOE (%)	LCOE. Best
RM3	Wave Point Absorber	76.00	286	3.90	0.09	0.38	51.33	10.73	5.52	26.22	3.55	2.79	32.57
RM5	Oscillating Surge Wave	69.20	360	4.97	0.07	0.38	43.98	13.55	4.33	26.11	3.55	1.86	31.52
RM6	Oscillating Water Column	106.00	373	8.26	0.07	0.38	57.12	7.86	2.61	30.54	3.55	1.13	35.23

[1]. Vincent S. Neary, Mirko Previsic, et al., Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. Technical Report SAND2014-9040, March 2014.

LCOE: Tidal and Wave energy converters

LCOE: Summary. Wind/Tidal/Wave

Control Co-Design

"Control to substitute materials"

Given previous assumptions we obtained:

1% LCOE reduction every 2% of Mass (steel) reduction in all technologies (and with previous assumptions)!!!

Absorber

Surge Wave

Water Column

Workshop: Agenda / Your feedback!!

PROJECT CASES (1H 15MIN)

-Offshore floating wind turbine project.

Brandon Ennis, Giorgio Bacelli. (Sandia Lab)

-Tidal energy converter project. **Shreyas Mandre**. (Brown Univ.)

-Wave energy converter project.

Alex Hagmuller. (AquaHarmonics)

PRINCIPLES AND METHODOLOGIES (45MIN)

-Application of control principles to co-design. **Tuhin Das**. (Univ. Central Florida)

-Co-optimization for co-design.

James Alliston. (Univ. Illinois, U.C.)

-Co-simulation for co-design.

Brian St. Rock. (UTRC)

WE NEED YOUR FEEDBACK!!

- Opportunities
- Challenges/Solutions
- Control Co-Design Program...

VISION AND OPPORTUNITIES (1H 40MIN)

- -Offshore floating wind turbines: a new approach. Saul Griffith. (OtherLab)
- -Wind energy systems: vision for onshore and offshore. **Alan Wright**. (NREL)
- -Airborne wind energy systems: vision and codesign. **Chris Vermillion**. (NCSU)
- -Tidal energy converters: vision and projects.

 Jarlath McEntee. (ORPC)
- -Wave energy converters: vision and opportunities. **Giorgio Bacelli**. (Sandia Lab)

1. Offshore Floating Wind Turbines

2. Offshore, Onshore and Airborne Wind

3. Tidal Energy
Converters

4. Wave Energy Converters

